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Abstract
We give an eight-dimensional realization of the Clifford algebra in the five-
dimensional Galilean covariant spacetime by using a dimensional reduction
from the (5 + 1) Minkowski spacetime to the (4 + 1) Minkowski spacetime
which encompasses the Galilean covariant spacetime. A set of solutions of
the Dirac-type equation in the five-dimensional Galilean covariant spacetime
is obtained, based on the Pauli representation of 8 × 8 gamma matrices. In
order to find an explicit solution, we diagonalize the Klein–Gordon divisor by
using the Galilean boost.

PACS numbers: 03.65.Pm, 11.10.Kk, 11.10.−z, 11.30.−j

1. Introduction

Nearly 20 years ago, Takahashi investigated the reduction from a (4 + 1) Galilean covariant
manifold to the Newtonian spacetime (with three-dimensional space) in order to build the non-
relativistic many-body theories by starting with Lorentz-like, manifestly covariant, equations
[1]. This ‘Galilean covariant’ manifold is actually a (4 + 1) Minkowski spacetime with
light-cone coordinates, which is reduced to the usual Newtonian spacetime [2]. Galilean
covariant theories for the Dirac-type fields have been developed by using a four-dimensional
realization of the Clifford algebra in a five-dimensional Galilean covariant spacetime [2].
Therein, we have 16 independent components that may be expressed as γA = I, γµ, σµν , with
µ, ν = 1, . . . , 5 [3]. Unfortunately, none of the pseudo-tensor interactions of ranks 0, 1 and
2 can be introduced into five- (or any odd-) dimensional theories, since they admit no ‘γ 6

matrix’ which corresponds to the γ 5 of the (3 + 1) Minkowski spacetime.
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Motivated by the physical applications described in the following paragraphs, our purpose
is to construct γ 5-like matrices in this Galilean covariant spacetime. A four-dimensional
realization of the Clifford algebra in the (4 + 1) Minkowski spacetime requires γ 5 as a fourth
spatial element of γµ s. Motivated by this fact, we discuss in this paper an eight-dimensional
realization of the Clifford algebra in the (4 + 1) Galilean covariant spacetime. Thus our
formulation involves two successive dimensional reductions: from the (5 + 1) Minkowski
spacetime to a (4 + 1) Minkowski spacetime, which corresponds to the five-dimensional
Galilean covariant spacetime mentioned earlier, and then from this extended manifold to the
usual Newtonian spacetime [4].

Parity refers to a reversal of orientation of the spatial manifold. This corresponds to
the reversal of coordinates in even-dimensional Minkowski spacetimes. In odd-dimensional
spacetimes, in which the number of spatial coordinates is even, the reflection of spatial
manifold has a determinant equal to one and hence it is continuously connected to the identity,
and so can be obtained as a rotation. Therefore, we must define parity as the reversal of sign of
an odd number of spatial coordinates in order to reverse the orientation of the spatial volume.
This is the reason why we start in the (5 + 1) Minkowski spacetime in order to define a parity
operation in the (4 + 1) Galilean covariant spacetime.

The development of eight-dimensional gamma matrices for the Dirac equation is motivated
by applications to problems like the beta decay in the four-fermion Lagrangian of the V − A

theory. This requires an evaluation of operators like

ψhγµ(1 − γ 5)ψhψlγ
µ(1 − γ 5)ψl,

which are a combination of the hadron and lepton currents in Poincaré (3 + 1)-dimensional
spacetime. Hence the necessity to have a γ 5 matrix which provides us with a chirality operator.
The leptonic part will be Poincaré invariant and the hadronic part will be Galilean invariant.
The simplest example is the neutron decay:

n −→ p + e− + ν.

This will provide us with an amplitude that still possesses a symmetry instead of just using an
expansion in terms of p/m, thus destroying any symmetry in the hadronic part.

Another application of γ 5 matrices is in deriving an N −N potential with a pseudo-vector
or pseudo-scalar coupling. Although there is no Yukawa coupling in the Galilean covariant
theories, it is still possible to define a four-point coupling. In addition, it is obvious that the
interaction term has similarities with the Nambu–Jona–Lasinio theory [5]. Such a development
may also be followed, in order to obtain further results, for the strongly interacting hadronic
systems. Our purpose is to make progress along these lines with a Galilean covariant theory
in (4 + 1) spacetime. However, in order to define the γ 5-like matrix, it is necessary to further
extend the theories to a (5 + 1) Minkowski manifold. Results of this paper are therefore quite
important in order to gain an understanding of the associated physical phenomena.

In section 2, we give an eight-dimensional realization of the Clifford algebra in the (5 + 1)

Minkowski spacetime. Then, in section 3, we construct wavefunctions for the Dirac equation
in this spacetime. By dimensional reduction from the (5 + 1) Minkowski spacetime to the
(4 + 1) Minkowski spacetime, we obtain 8×8 gamma matrices obeying the Clifford algebra in
the (4 + 1) Galilean covariant spacetime in section 4. The construction of wavefunctions
for the Dirac-type equation in the (4 + 1) Galilean covariant spacetime is performed in
section 5. The final section contains concluding remarks.

We establish the commutation and anticommutation relations of 8 × 8 gamma matrices in
appendix A, and their trace formulae in appendix B. Fierz identities are developed in appendix
C. Finally, in appendix D, we give explicit forms of wavefunctions obtained in sections 3 and
5. Throughout this work, we use the natural units, in which h̄ = 1 and c = 1.
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2. An eight-dimensional realization of the Clifford algebra in the (5 + 1) Minkowski
spacetime

Let us consider a matrix representation of the complex Clifford algebra Cl6 in a six-
dimensional vector space with a Lorentzian signature (5 + 1). The complex Clifford algebra
Cl6 � Cl5,1 ⊗R C is obtained by complexification of the real Clifford algebra Cl5,1.

Let γ µ (µ = 1, . . . , 5, 0) be the 8×8 Dirac gamma matrices. Then the γ -matrices satisfy
the relation:

{γ µ, γ ν} = 2gµν
I, (1)

where we choose the metric tensor to be given by

gµν = diag(1, 1, 1, 1, 1,−1) = gµν, (2)

such that

gµλg
λν = δν

µ.

Also, I in equation (1) denotes the 8 × 8 unit matrix.
Some references about Clifford algebras are given in [6–8].

2.1. An eight-dimensional realization of the Clifford algebra

In order to obtain an explicit form of 8 × 8 gamma matrices in a six-dimensional spacetime,
and motivated by the fact that the basic building blocks of the matrix representation of Cl6 are
the Pauli matrices (defined below), we introduce the following nine matrices:

ρ = σ ⊗ I ⊗ I,

π = I ⊗ σ ⊗ I,

Σ = I ⊗ I ⊗ σ,

(3)

where σ are the Pauli matrices:

I =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Then the matrices defined in equation (3) are

ρ1 =

⎛
⎜⎜⎝

04×4
I 0
0 I

I 0
0 I

04×4

⎞
⎟⎟⎠ , ρ2 =

⎛
⎜⎜⎝

04×4
−iI 0

0 −iI
iI 0
0 iI

04×4

⎞
⎟⎟⎠ , ρ3 =

⎛
⎜⎜⎝

I 0
0 I

04×4

04×4
−I 0
0 −I

⎞
⎟⎟⎠ ,

π1 =

⎛
⎜⎜⎝

0 I

I 0
04×4

04×4
0 I

I 0

⎞
⎟⎟⎠ , π2 =

⎛
⎜⎜⎝

0 −iI
iI 0

04×4

04×4
0 −iI
iI 0

⎞
⎟⎟⎠ , π3 =

⎛
⎜⎜⎝

I 0
0 −I

04×4

04×4
I 0
0 −I

⎞
⎟⎟⎠ ,

Σ =

⎛
⎜⎜⎝

σ 0
0 σ

04×4

04×4
σ 0
0 σ

⎞
⎟⎟⎠ .

The following relations hold among these matrices:
[ρk,	l] = [πk,	l] = [ρk, πl] = 0,

ρkρl = δkl + iεklmρm,

[ρk, ρl] = 2iεklmρm,

{ρk, ρl} = 2δkl, k, l, m = 1, 2, 3,

with similar relations for πs and 	s.

3
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To complete our construction, we introduce three mutually orthogonal unit vectors, m, n,
and l = m × n, which are utilized to express the gamma matrices as follows:

m · ρ = iγ 0,

(m × n) · ρ = γ 7,

(n · ρ) (m · π) = γ 4,

(n · ρ) (l · π) = γ 5,

(n · ρ) (n · π)Σ = γ.

(4)

We can prove that the γ µ s given by these equations satisfy the Clifford algebra (1), and
that γ 7 can be cast in the following form:

γ 7 = 1
6!εµνλρστ γ

µγ νγ λγ ργ σ γ τ = γ 1γ 2γ 3γ 4γ 5γ 0,

with

ε012345 = −ε012345 = −ε123450 = −1.

Let S denote the six-dimensional vector space corresponding to the eight-component
Dirac spinor, and recall that the Lorentz generator may be written as

Sµν = 1
8 (γ µγ ν − γ νγ µ).

The matrices γ µ act on the representation S so that the representation of Cl5,1 is just End(S), the
set of endomorphisms of S. In a similar way, the matrices (γ µ)T act on the dual representation
S∗, the matrices (γ µ)∗ act on the complex-conjugate representation S, and the matrices (γ µ)†

act on the representation S
∗
, where the operations T , ∗ and † denote the transpose, the complex

conjugation and the hermitian conjugation operations, respectively. These representations are,
in fact, equivalent because there exist elements of End(S) such that

(Sµν)† = −η−1Sµνη, (Sµν)∗ = Ĉ
−1

SµνĈ, (Sµν)T = −C−1SµνC.

The operators η, Ĉ and C are intertwining operators, e.g. Ĉ intertwines the representations S
and S. Hence we can choose

(γ µ)† = −η−1γ µη,

(γ µ)∗ = Ĉ
−1

γ µĈ,

(γ µ)T = −C−1γ µC.

It is possible to choose η as

η ≡ iγ 0. (5)

Then we find the following relations:

(γ µ)T = −C−1γ µC = Ĉ
−1

(γ µ)†Ĉ, (6)

with

Ĉ = γ 0C, (7)

and

Ĉ
† = Ĉ

−1 = −Ĉ
∗
.

If a representation of γ µ (such as in equation (4)) is fixed, i.e. the vectors m, n and l are
given, then the charge-conjugation matrix Ĉ is determined by the relations (6) and (7), since
Ĉ is expressed in terms of the γ -matrices, defined in equation (4).

4
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It is well known that the spinor representation, S, in the complex Clifford algebra Cl6 is
reducible, i.e. S = S+ ⊕ S−. Indeed, the chirality matrix γ 7, defined earlier, satisfies

(γ 7)2 = I, {γ µ, γ 7} = 0, [γ 7, Sµν] = 0.

Hence, γ 7 allows us to define the complex left- and right-handed Weyl spinors, which
correspond to the two irreducible representations of Cl6:

ψ±(x) = 1
2 (I ± γ 7)ψ(x),

with ψ±(x) ∈ S± and ψ(x) ∈ S.
Commutation and anticommutation relations involving the γ -matrices in a (5 + 1)

Minkowski manifold are given in appendix A.1, and the corresponding trace relations are
in appendix B.1.

In the next section, we discuss specific definitions of m, n and l which, in turn, lead to a
particular representation of the Dirac matrices.

2.2. The Pauli representation of gamma matrices

In this section we construct a representation, in which iγ 0 is diagonal, that we shall refer to as
the ‘Pauli representation’ of γ -matrices. It is obtained by choosing

m = (0, 0, 1), n = (0, 1, 0), l = (1, 0, 0).

Therefore, we find

iγ 0 = ρ3 = σ3 ⊗ I ⊗ I =

⎛
⎜⎜⎝

I 0
0 I

04×4

04×4
−I 0
0 −I

⎞
⎟⎟⎠ ,

γ 7 = −ρ1 = −σ1 ⊗ I ⊗ I =

⎛
⎜⎜⎝

04×4
−I 0
0 −I

−I 0
0 −I

04×4

⎞
⎟⎟⎠ ,

γ 4 = ρ2π3 = σ2 ⊗ σ3 ⊗ I =

⎛
⎜⎜⎝

04×4
−iI 0

0 iI
iI 0
0 −iI

04×4

⎞
⎟⎟⎠ ,

γ 5 = ρ2π1 = σ2 ⊗ σ1 ⊗ I =

⎛
⎜⎜⎝

04×4
0 −iI

−iI 0
0 iI
iI 0

04×4

⎞
⎟⎟⎠ ,

γ = ρ2π2Σ = σ2 ⊗ σ2 ⊗ σ =

⎛
⎜⎜⎝

04×4
0 −σ

σ 0
0 σ

−σ 0
04×4

⎞
⎟⎟⎠ .

(8)
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Note that this representation is equivalent to the one described in [7, 8]. We can prove it by
choosing the representation (m = (1, 0, 0), n = (0, 0, 1), l = (0, 1, 0)), which leads to

iγ 0 = ρ1 = 	
(3)
1 ,

γ 7 = −ρ2 = −	
(3)
2 ,

γ 4 = ρ3π1 = 	
(3)
3 ,

γ 5 = ρ3π2 = 	
(3)
4 ,

γ k = ρ3π3	k = 	
(3)
4+k, (k = 1, 2, 3),

where 	(3)
a (a = 1, . . . , 7) are in the notation defined in equation (4.1) of [7].

2.3. Number of independent gamma matrices

Let n be the dimension of spacetime, so that the number of s is 2n. Since we have

(1 + x)n =
n∑

k=0

(
n

k

)
xk =

n∑
k=0

nCkx
k,

and a completely antisymmetric tensor of rank k has nCk independent elements, then the
number of independent s is

nC0 + nC1 + · · · + nCn =
n∑

k=0

nCk(1)k = (1 + 1)n = 2n.

Thus there exist 2n linearly independent matrices:

(k)
µ1···µk

= d(k)
µ1···µk,ν1···νk

γ ν1 · · · γ νk , (k = 0, 1, . . . , n),

where d(k) are operators, described in [9], which project out the totally antisymmetric part of
a rank-k tensor.

In the case of six-dimensional Minkowski spacetime, we have 26 = 64 independent
gamma matrices, which we write as

(0) = I,

(1)
µ = γµ,

(2)
µν = σµν = 1

2i
(γµγν − γνγµ),


(3)
µνλ = σµνλ = 1

3
(γµσνλ + γνσλµ + γλσµν) = −1

6
εµνλρστ σ

ρστ γ 7,

(4)
µνρσ = −1

2
εµνρσξησ

ξηγ 7,


(5)
µνρσλ = −εµνρσλξγ

ξγ 7,


(6)
µνρσλτ = −εµνρσλτ γ

7.

To show properties under the Lorentz transformations, we choose the following 64 linearly
independent matrices:

γA = I, γ 7, γµ, iγ 7γµ, σµν, γ
7σµν, σµνλ,

satisfying

γ AγA = I, (no summation over A),

Tr(γA) = 0, if γA �= I,

6
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as well as

Tr(γ AγB) = 8δA
B .

By using the charge-conjugation matrix C of equation (6), we can separate the γA s into
symmetric and antisymmetric elements as

(γAC)αβ = εA(γAC)βα, (9)

or, equivalently,

(γA)βα = εA(C−1γAC)βα,

where

εA =
{

+1 for C, γ 7σµνC, σλµνC,

−1 for γ 7C, γµC, iγ 7γµC, σµνC,
(10)

We have used the relation C† = C−1 = C∗.
Note that the lowercase indices from the beginning of the Greek alphabet, α, β, γ , etc

denote spinor indices, and the lowercase indices from the middle of the alphabet, ξ , κ , λ, etc
are tensor indices.

2.4. Parity

The parity matrix, denoted by �, is defined by imposing the condition that the equation of
motion be invariant under the discrete transformation of space reflection:

xµ → x ′µ = (−x, x4, x5, x0).

Consider the Dirac field, then the requirement reads

η−1�†ηγ µ� =
{−γ µ, for µ = 1, 2, 3,

γ µ, for µ = 4, 5, 0,
(11)

where the matrix η is defined in equation (5). Hence the Dirac equation is invariant under the
space reflection.

The parity matrix may be expressed by

� = γ 4γ 5γ 0.

3. Construction of wavefunctions for the Dirac equation in the (5 + 1) Minkowski
spacetime

In this section, we obtain the wavefunctions for the Dirac equation of motion in the extended
(5 + 1) Minkowski manifold. We adopt the methods of constructing wavefunctions developed
by Takahashi [10], in which the Klein–Gordon divisor is diagonalized by using the Lorentz
boost.

The Dirac equation for massive particles with mass m is expressed in the form:

�(∂)ψ(x) = 0, (12)

where the operator �(∂) is given by

�(∂) = −(γ · ∂ + m).

Here, the scalar product is denoted by A · B and defined by

A · B = gµνA
µBν = AiBi + AaBa − A0B0,

7
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where the lowercase indices from the beginning of the Latin alphabet, a, b , c, etc take the
values 4 and 5, and the lowercase indices from the middle of the Latin alphabet, i, j, k, etc run
from 1 to 3.

The adjoint equation to equation (12) is obtained by taking its Hermitian conjugate:

ψ(x)�(− ←
∂ ) = 0,

(
←
∂ denotes the left-derivative) with

ψ(x) = ψ †(x)η.

We assume the existence of a non-singular matrix η which satisfies the relation:

[η�(∂)]† = η�(−∂). (13)

This condition is equivalent to requiring the hermiticity of the Lagrangian in the form

L(x) = ψ(x)�(∂)ψ(x).

Thus we choose η as defined in equation (5).
The operator d(∂), reciprocal to the operator �(∂) of equation (12), is defined by

�(∂)d(∂) = d(∂)�(∂) = (∂2 − m2)I.

This reciprocal operator is called the ‘Klein–Gordon divisor’. It is given by

d(∂) = −(γ · ∂ − m).

The Dirac field ψ(x) and its charge-conjugate field ψC(x) can be expanded in terms of
c-number wavefunctions with positive and negative frequencies, represented by u(r)

p (x) and
v(r)

p (x), respectively, and two kinds of creation and annihilation operators:

ψ(x) =
∑

r

∫
dp d2pa

[
u(r)

p (x)a(r)(p, pa) + v(r)
p (x)b(r)†(p, pa)

]
,

ψC(x) := Ĉψ∗(x),

=
∑

r

∫
dp d2pa

[
u(r)

p (x)b(r)(p, pa) + v(r)
p (x)a(r)†(p, pa)

]
,

where

{a(r)(p, pa), a(r ′)†(p′, p′a)} = δrr ′δ(p − p′)δ(2)(pa − p′a),
{b(r)(p, pa), b(r ′)†(p′, p′a)} = δrr ′δ(p − p′)δ(2)(pa − p′a),

and all other commutators of similar type vanish. We use the notation

d2pa = dp4 dp5 and δ(2)(pa − p′a) = δ(p4 − p′4)δ(p5 − p′5).

The function v(r)
p (x) is defined by

v(r)
p (x) = Ĉu(r)∗

p (x).

The charge-conjugation matrix Ĉ, defined by equation (6), satisfies

[η�(∂)]T = [η�(−∂)]∗ = −Ĉ
−1

η�(−∂)Ĉ.

It is convenient to take the functions u(r)
p (x) to be eigenvectors of the operator −i∂µ:

−i∂µu(r)
p (x) = pµu(r)

p (x).

By substituting the Fourier transform of u(r)
p (x) into this equation, we find

u(r)
p (x) = fp(x)u(r)(p, pa), v(r)

p (x) = f ∗
p (x)v(r)(p, pa),

8



J. Phys. A: Math. Theor. 41 (2008) 125402 M Kobayashi et al

where

fp(x) = (2π)−5/2 eip·x,

and

p0 =
√

p · p + (p4)2 + (p5)2 + m2.

By following the prescription developed in chapter 5 of [10], we obtain the orthonormality
condition and the closure properties in the momentum representation:

u(r ′)(p, pa) iγ 0u(r)(p, pa) = δrr ′ ,

v(r ′)(p, pa) iγ 0v(r)(p, pa) = δrr ′ ,∑
r

u(r)
α (p, pa)u(r)β(p, pa) = 1

2p0
dβ

α (ip),

∑
r

v(r)
α (p, pa)v(r)β(p, pa) = − 1

2p0
dβ

α (−ip).

Consider a Lorentz transformation matrix L(p, pa) given by

L(p, pa) =
√

p0 + m

2m
I − 1√

2m(p0 + m)
γ 0(p · γ + pbγ b). (14)

Then we have

L−1(p, pa)γ µL(p, pa) = �µ
ν (p, pa)γ ν, (15)

where

�0
ν(p, pa) =

(
pk

m
,
pa

m
,
p0

m

)
,

�i
ν(p, pa) =

(
gik +

pipk

m(p0 + m)
,

pipa

m(p0 + m)
,
pi

m

)
,

�b
ν(p, pa) =

(
pbpk

m(p0 + m)
, gba +

pbpa

m(p0 + m)
,
pb

m

)
.

The transformation coefficients �µ
ν satisfy the relation

gµν�
µ
ρ (p, pa)�ν

σ (p, pa) = gρσ ,

as is expected, and hence they induce the homogenous Lorentz transformation. It follows
from equation (15) that

L−1(p, pa) d(ip)L(p, pa) = m(I + iγ 0). (16)

The factor (I + iγ 0) plays a crucial role when constructing wavefunctions, because we find the
following key relations from this factor:

L(p, pa)(I + iγ 0) = 1√
2m(p0 + m)

d(ip)(I + iγ 0),

(I + iγ 0)L†(p, pa)η = (I + iγ 0)L−1(p, pa),

where we have used the relation

γ 0L†(p, pa)γ 0 = −L−1(p, pa).

9
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Note that equation (6) leads to the useful relation:

ĈL∗(p, pa)Ĉ
−1 = L(p, pa).

If we choose the Pauli representation for the gamma matrices, the relation (16) states that the
Klein–Gordon divisor is diagonalized by the Lorentz boost (14).

The helicity operator h is defined in terms of the rank-3 Pauli–Lubanski tensor:

h = −1

2

1

|p|w045 = 1

2
	k

pk

|p| , (17)

where 	k is defined in equation (3), and the complete Pauli–Lubanski tensor is given by

wλµν = 1
2ελµνρατp

ρσατ .

By using the representation of gamma matrices given in equation (4), we find that

[L(p, pa), h] = 0.

To diagonalize the helicity operator (17), we introduce the following unitary matrix:

S(p) = 1√
2(1 + n3)

[(1 + n3)I + in2	1 − in1	2], (18)

where

nk = pk

|p| .
By using the matrix (18), we can prove the relation

S−1(p)hS(p) = 1
2	3,

where 	3 is defined in equation (3), hence the helicity operator h is diagonalized by S(p). The
definition in equation (18) implies that

ĈS∗(p)Ĉ
−1 = S(p).

By noting that

Ĉh∗Ĉ
−1 = −h,

we find

hu(r)(p, pa) = 1
2ε(r)u(r)(p, pa),

and

hv(r)(p, pa) = hĈu(r)∗(p, pa) = − 1
2ε(r)v(r)(p, pa),

in the Pauli representation, where r runs from 1 to 4, and ε(r) is given by

ε(r) =
{

1 for r = 1, 3,

−1 for r = 2, 4.

Wavefunctions are constructed in the Pauli representation for gamma matrices as follows:

hβ
αu

(r)
β (p, pa) = 1

2
ε(r)u(r)

α (p, pa),

= 1√
4mp0

hβ
α[d(ip)L(p, pa)S(p)]rβ,

=
√

m

p0
hβ

α

[
L(p, pa)

1

2
(I + iγ 0)S(p)

]r

β

,

10
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= 1√
2p0(p0 + m)

[
(−iγ · p + m)

1

2
(I + iγ 0)hS(p)

]r

α

,

= 1

2

1√
2p0(p0 + m)

[
(−iγ · p + m)

1

2
(I + iγ 0)S(p)	3

]r

α

, (19)

u(r)β(p, pa)hα
β = 1

2
ε(r)u(r)α(p, pa),

=
√

m

p0

[
S−1(p)

1

2
(I + iγ 0)L−1(p, pa)

]β

r

hα
β,

= 1

2

1√
2p0(p0 + m)

[
	3S

−1(p)
1

2
(I + iγ 0)(−iγ · p + m)

]α

r

,

hβ
αv

(r)
β (p, pa) = −1

2
ε(r)v(r)

α (p, pa),

=
√

m

p0
hβ

α

[
L(p, pa)

1

2
(I − iγ 0)S(p)	3Ĉ

]
βr

,

= 1

2

1√
2p0(p0 + m)

[
(iγ · p + m)

1

2
(I − iγ 0)S(p)	3Ĉ

]
αr

,

v(r)β(p, pa)hα
β = −1

2
ε(r)v(r)α(p, pa),

= −
√

m

p0

[
Ĉ

−1
S−1(p)

1

2
(I − iγ 0)L−1(p, pa)

]rβ

hα
β,

= −1

2

1√
2p0(p0 + m)

[
Ĉ

−1
	3S

−1(p)
1

2
(I − iγ 0)(iγ · p + m)

]rα

, (20)

where the charge conjugation matrix, obtained from equation (6), is given by

Ĉ = γ 0γ 4γ 5γ 2 =

⎛
⎜⎜⎝

04×4
−iσ2 0

0 −iσ2

−iσ2 0
0 −iσ2

04×4

⎞
⎟⎟⎠ = −Ĉ

−1
. (21)

To obtain the explicit form of the charge conjugation matrix, we have to fix a representation
of the gamma matrices. We thus find the explicit form, equation (21), for the matrix Ĉ in
the Pauli representation. Explicit forms of wavefunctions that follow from equation (19) to
equation (20) are shown in appendix D.1.

4. An eight-dimensional realization of the Clifford algebra in the five-dimensional
Galilean covariant spacetime

In this section, we turn to the reduction from the (5 + 1) Minkowski manifold to the (4 + 1)

Galilean covariant spacetime. More specifically, we exploit the results found in the previous
sections to obtain 8 × 8 gamma matrices (denoted by ) in the Galilean covariant spacetime,
from the gamma matrices (denoted by γ ) defined on the extended Minkowski manifold.

Consider the five-dimensional Galilean covariant spacetime with light-cone coordinates,
xµ (µ = 1, . . . , 5), with the metric tensor:

ηµν =
⎛
⎝13×3 03×2

02×3
0 −1

−1 0

⎞
⎠ .

11
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The coordinate system yµ (µ = 1, 2, 3, 4, 0), defined by (see [2])

y = x, y4 = 1√
2
(x4 − x5), y0 = 1√

2
(x4 + x5), (22)

admits the diagonal metric of equation (2). Therefore, the five-dimensional Galilean covariant
spacetime corresponds to a (4 + 1) Minkowski spacetime, so that it is possible to describe non-
relativistic theories in a Lorentz-like covariant form. A further reduction, to the Newtonian
spacetime, is needed, as explained in [1, 2].

In order to introduce pseudo-tensor interactions of rank 0, 1 and 2 into the five-dimensional
Galilean covariant theory, we need a gamma-6 matrix (which corresponds to the gamma-5
matrix in the usual (3 + 1) Minkowski spacetime) obtained by dimensional reduction from the
(5 + 1) Minkowski spacetime to the (4 + 1) Minkowski spacetime with light-cone coordinates.

Let µ and γ µ be 8 × 8 gamma matrices in the five-dimensional Galilean-covariant and
Minkowski spacetimes, respectively. They transform as the contravariant vectors in each
spacetime. Therefore, we have

Γ = γ,

4 = 1√
2
(γ 4 + γ 0), (23)

5 = 1√
2
(−γ 4 + γ 0).

The gamma-6 matrix may be taken as

6 = γ 7,

where 6 anticommutes with µ. Note that neither γ 1γ 2γ 3γ 4γ 0 nor 12345

anticommute with the µ s, which satisfy the Clifford algebra:

{µ, ν} = 2ηµν.

The parity matrix � may be expressed by

� = γ 4γ 5γ 0,

and satisfies the relations
�k + k� = 0, (k = 1, 2, 3),

�4 − 4� = 0,

�5 − 5� = 0.

These equations are equivalent to imposing the condition given by equation (11).
Since, in the five-dimensional Galilean covariant spacetime, the dimension of algebra is

25 = 32, then we take 32 independent gamma matrices given by

A = I, 6, µ, i6µ,	µν, 
6	µν,

where 	µν is defined by

	µν = 1

2i
(µν − νµ). (24)

These -matrices satisfy the relation

Tr(AB) = 8δA
B . (25)

Since the µs are linear combinations of γ µs and 6 = γ 7, we have

(µ)T = −C−1µC = Ĉ
−1

(µ)†Ĉ.

Thus we find

(AC)αβ = εA(AC)βα, (26)

where

εA =
{

+1 for C,6	µνC,

−1 for 6C,µC, i6µC,	µνC.
(27)

12
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4.1. The Dirac-type equation in the Pauli representation

In the five-dimensional Galilean covariant spacetime, the Dirac-type equation for massless
fields can be cast in the following form:

�(∂)ψ(x) = 0, (28)

with

�(∂) = −µ∂µ,

where the wavefunction is an eight-component spinor. The adjoint equation to equation (28)
is given by

ψ(x)�(−←
∂ ) = 0,

and

ψ(x) = ψ †(x)η.

Also, we use

η = i 1√
2
(4 + 5) = iγ 0, (29)

which agrees with equation (5). Here, we have imposed the relation:

[η�(∂)]† = η�(−∂).

For the fifth component of the derivative ∂µ, we have the relationship ∂5 = −im, which
implies the ansatz

ψ(x) = e−imx5
ψ(x, t),

or, in the matrix form,⎛
⎜⎜⎝

u1(x)

u2(x)

u3(x)

u4(x)

⎞
⎟⎟⎠ = e−imx5

⎛
⎜⎜⎝

u1(x, t)

u2(x, t)

u3(x, t)

u4(x, t)

⎞
⎟⎟⎠

where uk(x) and uk(x, t) (k = 1, 2, 3, 4) are two-component spinors.
The Galilean-covariant -matrices can be expressed in terms of the γ -matrices in the

(5 + 1) Minkowski spacetime. By using equations (8), we obtain the Dirac-type equation in
the Pauli representation. If we write it out explicitly, we have

i∂0[u1(x, t) + u3(x, t)] = − 1

2m
�[u1(x, t) + u3(x, t)],

(30)
i∂0[u2(x, t) − u4(x, t)] = − 1

2m
�[u2(x, t) − u4(x, t)],

with

u1(x, t) − u3(x, t) = 1√
2m

σ · ∇[u2(x, t) − u4(x, t)],

(31)
u2(x, t) + u4(x, t) = 1√

2m
σ · ∇[u1(x, t) + u3(x, t)].

It is convenient to introduce the orthogonal matrix R:

R = 1√
2

⎛
⎜⎜⎝

I 0 I 0
0 I 0 I

I 0 −I 0
0 I 0 −I

⎞
⎟⎟⎠ = 1√

2
(ρ1 + ρ3). (32)

13
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We can utilize this matrix to rotate ψ(x, t) in the form

�(x, t) = Rψ(x, t).

Written explicitly in matrix form, it reads⎛
⎜⎜⎝

U1(x, t)

U2(x, t)

U3(x, t)

U4(x, t)

⎞
⎟⎟⎠ = 1√

2

⎛
⎜⎜⎝

u1(x, t) + u3(x, t)

u2(x, t) + u4(x, t)

u1(x, t) − u3(x, t)

u2(x, t) − u4(x, t)

⎞
⎟⎟⎠ .

Therefore, we obtain from equations (30) to (31) that

i∂0U1(x, t) = − 1

2m
�U1(x, t), U2(x, t) = 1√

2m
σ · ∇U1(x, t), (33)

U3(x, t) = 1√
2m

σ · ∇U4(x, t), i∂0U4(x, t) = − 1

2m
�U4(x, t). (34)

This result shows that the five-dimensional Galilean-covariant matrices can be obtained by
using a similarity transformation which involves the orthogonal matrix R .

4.2. Explicit forms of the Galilean-covariant gamma matrices

Consider the Dirac Lagrangian, written as

L(x) = ψ(x)�(x)ψ(x),

where

�(∂) = −µ∂µ.

The hermiticity of the Lagrangian leads to the condition given by equation (13). This
Lagrangian becomes

L(x) = �(x)�̃(∂)�(x), (35)

where � is given by

�(x) = e−imx5
�(x, t) = e−imx5

Rψ(x, t),

and �̃ is defined as

�̃(∂) = R�(∂)R−1. (36)

Note that

R = RT = R−1.

Therefore, it follows from equation (36) that

̃µ = RµR−1, η̃ = RηR−1.

The Dirac-type equation is obtained from the Lagrangian given by equation (35):

�̃(∂)�(x, t) = 0. (37)

If we express the Galilean-covariant gamma matrices in the Pauli representation, then the
Dirac-type equation (37) leads to equations (33) to (34).

14
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Explicit forms of the Galilean-covariant gamma matrices are given by using the Pauli
representation as follows:

k =

⎛
⎜⎜⎝

04×4
0 σk

−σk 0
0 −σk

σk 0
04×4

⎞
⎟⎟⎠ , (k = 1, 2, 3),

4 = −
√

2 i

⎛
⎜⎜⎝

04×4
0 0
0 I

I 0
0 0

04×4

⎞
⎟⎟⎠ ,

5 = −
√

2 i

⎛
⎜⎜⎝

04×4
I 0
0 0

0 0
0 I

04×4

⎞
⎟⎟⎠ ,

η =

⎛
⎜⎜⎝

04×4
I 0
0 I

I 0
0 I

04×4

⎞
⎟⎟⎠ = ρ1.

Moreover, we find

6 =

⎛
⎜⎜⎝

−I 0
0 −I

04×4

04×4
I 0
0 I

⎞
⎟⎟⎠ = −ρ3, � =

⎛
⎜⎜⎝

04×4
0 −iI
iI 0

0 −iI
iI 0

04×4

⎞
⎟⎟⎠ .

Here we have replaced ̃µ, ̃6, η̃ and �̃ by µ, 6, η and �, respectively. It should be noted
that the matrix 6 is block diagonal.

The chirality operators may be defined as

1
2 (I ± 6).

They are block diagonal, and the chiral eigenstates are given by

ψ±(x) = 1
2 (I ± 6)ψ(x),

which appear in lower and upper four-component spinors.

5. Construction of wavefunctions for the Dirac-type equation

The main advantage of employing a five-dimensional Galilean-covariant theory is that we can
perform many calculations in a way analogous to the relativistic treatment. Indeed, many of our
non-relativistic equations have the same form as the corresponding equations in relativistic
quantum theory, except that they are written in a manifestly covariant form on the (4 + 1)

Minkowski spacetime.
Let P µ and pµ be contravariant vectors in the five-dimensional Galilean-covariant and

Minkowski spacetimes, respectively. Then they are written as

P µ = (p,m,E), pµ = (p, p4, p0), (38)

15
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with

p0 = 1√
2
(m + E), p4 = 1√

2
(m − E),

where we have used equation (22). Moreover, if we impose the conditions

PµP µ = pµpµ = −κ2
m,

and

κm =
√

2m,

we find

E = 1

2m
p · p + m.

We find a similar expression for p0:

p0 =
√

p · p + (p4)2 + κ2
m = 1

2κm

p · p + κm.

When we perform the reduction from the six-dimensional to the five-dimensional
Minkowski spacetime, the Lorentz boost, equation (14), becomes

L(p, p4) =
√

p0 + κm

2κm

I − 1√
2κm(p0 + κm)

γ 0(p · γ + p4γ 4)

= L−1(−p,−p4). (39)

The Galilean-covariant transformation matrix is obtained by substituting equation (23) into
equation (39):

L(p, p4) = 1√
2κm(p0 + κm)

[
(p0 + κm)I − 1√

2
(4 + 5)p · Γ − 1

2
(−45 + 54)p4

]
=: G(P ). (40)

Hence we find

G−1(P )µG(P ) = Zµ
ν (P )ν,

where

Zi
ν(P ) =

(
ηik +

P iP k

m(E + 3m)
,

2P i

E + 3m
,

(E + m)P i

m(E + 3m)

)
,

Z4
ν (P ) =

(
2P k

E + 3m
,

4m

E + 3m
,

E − m

E + 3m

)
,

Z5
ν (P ) =

(
(E + m)P k

m(E + 3m)
,

E − m

E + 3m
,

(E + m)2

m(E + 3m)

)
.

The transformation coefficients Zµ
ν lead to

ηµνZ
µ
ρ (P )Zν

σ (P ) = ηρσ .

By noting that

d(ip) = −(iγ · p − κm) = −(i · P − κm) =: D(iP),

we find

G−1(P )D(iP)G(P ) = κm

[
I + i

1√
2
(4 + 5)

]
. (41)
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We can prove the following relations:

G(P )(I + η) = 1√
2m(E + 3m)

D(iP)(I + η),

(I + η)G†(P )η = (I + η)G−1(P ),

where we have used

ηG†(P )η = G−1(P ),

with η defined by equation (29). If we choose the Pauli representation for gamma matrices,
then equation (41) shows us that the Klein–Gordon divisor in the five-dimensional Galilean
covariant spacetime is diagonalized by the Galilean boost, equation (40).

Following the prescription developed in section 3, we can construct wavefunctions for the
Dirac-type equation:

−(iγ · p + κm)u(r)(p, p4) = −(i · P + κm)u(r)(P ) = 0,

where the matrices µ are given by equation (23), in the Pauli representation. The
wavefunctions then take the form:

hβ
αu

(r)
β (P ) = 1

2
ε(r)u(r)

α (P ),

= 1

2

1√
(E + m)(E + 3m)

[
(−i · P + κm)

1

2
(I + η)S(P)	3

]r

α

, (42)

u(r)β(P )hα
β = 1

2
ε(r)u(r)α(P ),

= 1

2

1√
(E + m)(E + 3m)

[
	3S

−1(P)
1

2
(I + η)(−i · P + κm)

]α

r

,

hβ
αv

(r)
β (P ) = −1

2
ε(r)v(r)

α (P ),

= 1

2

1√
(E + m)(E + 3m)

[
(i · P + κm)

1

2
(I − η)S(P)	3Ĉ

]
αr

,

v(r)β(P )hα
β = −1

2
ε(r)v(r)α(P ),

= −1

2

1√
(E + m)(E + 3m)

[
Ĉ

−1
	3S(P)

1

2
(I − η)(i · P + κm)

]rα

, (43)

where the charge-conjugation matrix Ĉ is given by equation (21). These wavefunctions are
given explicitly in appendix D.2.

6. Concluding remarks

The general idea allowing a covariant treatment of non-relativistic theories is to perform
a dimensional reduction from (4 + 1) Minkowski spacetime. However, the γ 5-like matrix
has no analogue in odd-dimensional spacetime. Therefore, in this paper, we start with a
(5 + 1)-dimensional spacetime.

An eight-dimensional realization of the Clifford algebra in the five-dimensional Galilean
covariant spacetime is obtained by reduction from the six-dimensional to the five-dimensional
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Minkowski spacetime which encompasses Galilean covariant spacetime. The solutions to the
Dirac-type equation in the five-dimensional Galilean covariant spacetime are shown explicitly
in the Pauli representation (see appendix D.2). The chiral eigenstates are also obtained by
rotating the solution just mentioned above by means of equation (32).

Consider an inverse Galilean transformation, obtained by substituting the direction
(p, p4) with (−p,−p4). Then we can derive the Galilean boost from the Lorentz boost,
equation (39),

L−1(−p,−p4) = L(p, p4) = G(P ),

and hence

G(P )µG−1(P ) = ′νZµ
ν (P ),

where

′ν = (−Γ, 5, 4).

It should be mentioned that 4 and 5 are interchanged by substituting p4 with −p4. Thus,
in the massless limit, we find

lim
m→0

Zµ
ν (P ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 v1 0

0 1 0 v2 0

0 0 1 v3 0

0 0 0 1 0

v1 v2 v3 1
2 v · v 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is exactly the proper Galilean transformation.
The construction presented in this paper allows a definition of a parity operator as well as a

chirality operator. We have included important information related to the Clifford algebra, such
as the commutation and anticommutation relations, trace formulae and the Fierz identities, in
appendices A, B and C, respectively. A reduction to the (4 + 1) Minkowski spacetime that
encompasses the Galilean covariant spacetime is deduced.

Now the necessary developments to treat Galilean covariant theories for applications to
problems like β-decay and to develop a theory like the Galilean covariant version of the
Nambu–Jona–Lasinio problem are possible.
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Appendix A. Commutation and anticommutation relations for the gamma matrices

Hereafter, we provide lists of commutation and anticommutation relations for the gamma
matrices. Section A.1 contains these relations for the 8 × 8 representations discussed in
section 2.1, for the (5 + 1) Minkowski spacetime. The corresponding relations for the five-
dimensional Galilean covariant spacetime -matrices, introduced in section 4, are given in
section A.2.

18



J. Phys. A: Math. Theor. 41 (2008) 125402 M Kobayashi et al

A.1. The (5 + 1) Minkowski spacetime

The quantities encountered hereafter have been defined in section 2.1. The matrices 	[ ][ ] are
described at the end of the present section:

[γ 7, γ µ] = 2γ 7γ µ,

[γ 7, iγ 7γ µ] = 2iγ µ,

[γ 7, σµν] = 0,

[γ 7, γ 7σµν] = 0,

[γ 7, σ λµν] = 2γ 7σλµν,

[γ µ, γ ν] = 2iσµν,

[γ µ, iγ 7γ ν] = −iγ 7{γ µ, γ ν},
[γ ρ, σµν] = −2i(gρµγ ν − gρνγ µ),

[γ λ, γ 7σµν] = −γ 7{γ λ, σµν},
[γ κ, σ λµν] = − 1

6ελµνρστ γ 7{γ κ, σρστ },
[iγ 7γ µ, iγ 7γ ν] = [γ µ, γ ν],

[iγ 7γ ρ, σµν] = iγ 7[γ ρ, σµν],

[iγ 7γ λ, γ 7σµν] = iγ 7{γ λ, σµν},
[iγ 7γ ρ, σ λµν] = iγ 7{γ ρ, σ λµν},
[σµν, σ ρσ ] = 2i(gµσσ ρν − gµρσ σν − gνσ σ ρµ + gνρσ σµ),

[σµν, γ 7σρσ ] = γ 7[σµν, σ ρσ ],

[σρσ , σ λµν] = 2i[(gλρσ σµν − gλσσ ρµν) + (gµρσ σνλ − gµσσρνλ) + (gνρσ σλµ − gνσ σ ρλµ)],

= − 1
6ελµνκτη[σρσ , σκτη]γ 7,

= −iελµνκτη
(
gρ

κ σ σ
τη − gσ

κ σ ρ
τη

)
γ 7,

[γ 7σµν, γ 7σρσ ] = [σµν, σ ρσ ],

[γ 7σρσ , σ λµν] = γ 7{σρσ , σ λµν},
[σλµν, σ ρστ ] = 2(i	[λµν][ρστ ] + ελµνρστ γ 7),

{γ 7, γ µ} = 0,

{γ 7, iγ 7γ µ} = 0,

{γ 7, σµν} = 2γ 7σµν,

{γ 7, γ 7σµν} = 2σµν,

{γ 7, σ λµν} = 0,

{γ µ, γ ν} = 2gµν,

{γ µ, iγ 7γ ν} = −iγ 7[γ µ, γ ν],

{γ λ, σµν} = − 1
3ελµνρστ σρστ γ

7 = 2σλµν,

{γ ρ, γ 7σµν} = −γ 7[γ ρ, σµν],

{γ ρ, σ λµν} = 2(gρλσµν + gρµσ νλ + gρνσ λµ),

{iγ 7γ µ, iγ 7γ ν} = {γ µ, γ ν},
{iγ 7γ λ, σµν} = iγ 7{γ λ, σµν},
{iγ 7γ ρ, γ 7σµν} = −i[γ ρ, σµν],

{iγ 7γ κ, σ λµν} = iγ 7[γ κ, σ λµν],
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{σµν, σ ρσ } = 2(	[µν][ρσ ] + iεµνρσηξσηξ γ
7),

{σµν, γ 7σρσ } = γ 7{σµν, σ ρσ },
{σρσ , σ λµν} = 2(	[ρσ ][λµν] − ερσλµνηγηγ

7),

{γ 7σµν, γ 7σρσ } = {σµν, σ ρσ },
{γ 7σρσ , σ λµν} = γ 7[σρσ σ λµν],

{σλµν, σ ρστ } = 1
3 [2(gλρσ στ + gλσσ τρ + gλτσ ρσ )σµν + 2(gµρσ στ + gµσσ τρ + gµτσ ρσ )σ νλ

+ 2(gνρσ στ + gνσ σ τρ + gντσ ρσ )σ λµ] − 1
3 i

[
γ 7γ λ

(
ερστµζξσ ν

ζξ − ερστνζξ σ
µ
ζξ

)
+ γ 7γ µ

(
ερστνζξ σ λ

ζξ − ερστλζξσ ν
ζξ

)
+ γ 7γ ν

(
ερστλζξσ

µ
ζξ − ερστµζξσ λ

ζξ

)]
.

The matrices 	[ ][ ] are defined by:

	[µν][ρσ ] = gµρgσν − gµσgρν,

	[ρσ ][λµν] = (gρλgσµ − gσλgρµ)γ ν + (gρµgσν − gσµgρν)γ λ + (gρνgσλ − gσνgρλ)γ µ,

	[λµν][ρστ ] = (gλρgµσ − gλσ gµρ)σ ντ + (gλσ gµτ − gλτgµσ )σ νρ + (gλτ gµρ − gλρgµτ )σ νσ

+ (gµρgνσ − gµσgνρ)σ λτ + (gµσgντ − gµτgνσ )σ λρ + (gµτgνρ − gµρgντ )σ λσ

+ (gνρgλσ − gνσ gλρ)σµτ + (gνσ gλτ − gντ gλσ )σµρ + (gντ gλρ − gνρgλτ )σµσ .

A.2. The five-dimensional Galilean covariant spacetime

The quantities described in this appendix are described in section 4. The matrices 	µν are
defined in equation (24):

[6, µ] = 26µ,

[6, i6µ] = 2iµ,

[6, 	µν] = 0,

[6, 6	µν] = 0,

[µ, ν] = 2i	µν,

[µ, i6ν] = −i6{µ, ν},
[ρ,	µν] = −2i(ηρµν − ηρνµ),

[λ, 6	µν] = −6{λ,	µν},
[i6µ, i6ν] = [µ, ν],

[i6ρ,	µν] = i6[ρ,	µν],

[i6λ, 6	µν] = −i{λ,	µν},
[	µν,	ρσ ] = 2i(ηµσ	ρν − ηµρ	σν − ηνσ	ρµ + ηνρ	σµ),

[	µν, 6	ρσ ] = 6[	µν,	ρσ ],

[6	µν, 6	ρσ ] = [	µν,	ρσ ],

{6, µ} = 0,

{6, i6µ} = 0,

{6, 	µν} = 26	µν,

{6, 6	µν} = 2	µν,

{µ, ν} = 2ηµν,

{µ, i6ν} = −i6[µ, ν],

{λ,	µν} = i(λνµ − µνλ),
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{ρ, 6	µν} = −6[ρ,	µν],

{i6µ, i6ν} = {µ, ν},
{i6λ,	µν} = i6{λ,	µν},
{i6ρ, 6	µν} = −i[ρ,	µν],

{	µν,	ρσ } = (µνσρ + ρσνµ) − 2ηµνηρσ ,

{	µν, 6	ρσ } = 6{	µν,	ρσ },
{6	µν, 6	ρσ } = {	µν,	ρσ }.

Appendix B. Traces of the gamma matrices

In this appendix, we give lists of traces involving the gamma matrices. The γ -matrices
defined in section 2.1 for the (5 + 1) Minkowski spacetime are given in appendix B.1, and
the -matrices of section 4 for the five-dimensional Galilean covariant spacetime are in
appendix B.2.

B.1. The (5 + 1) Minkowski spacetime

Tr(γµ1 · · · γµn
) = 0, for n odd,

Tr(γµγν) = 8gµν,

Tr(γµγνγργσ ) = 8(gµνgρσ − gµρgνσ + gµσgνρ),

Tr(γλγµγνγργσ γτ ) = 8[(gλµgνρ − gλνgµρ + gλρgµν)gστ − gλρ(gµσgντ − gµτgνσ )

− (gλµgνσ − gλνgµσ + gλσ gµν)gτρ − gλσ (gµτgνρ − gµρgντ )

+ (gλµgντ − gλνgµτ + gλτgµν)gρσ − gλτ (gµρgνσ − gµσgνρ)],

Tr(γ 7) = 0,

Tr(γ 7γµ1 · · · γµn
) = 0, for n odd,

Tr(γ 7γµγν) = 0,

Tr(γ 7γµγνγργσ ) = 0,

Tr(γ 7γλγµγνγργσ γτ ) = −8ελµνρστ ,

Tr(σµν) = 0,

Tr(σλµν) = 0,

Tr(σµνσρσ ) = 8(gµρgνσ − gµσgνρ),

Tr(σλµσνρσστ ) = 8i[(gλτ gµν − gλνgµτ )gρσ − (gλσ gµν − gλνgµσ )gτρ

− gλρ(gµσgντ − gµτgνσ ) + gµρ(gνσ gλτ − gντ gλσ )],

Tr(σλµνσρστ ) = 8
3 [gλρ(gµσgντ − gµτgνσ ) + gλσ (gµτgνρ − gµρgντ ) + gλτ (gµρgνσ − gµσgνρ)],

Tr(γ 7σλµνσρστ ) = 8ελµνρστ ,

Tr(γ 7σλµσνρσστ ) = −8iελµνρστ .

B.2. The five-dimensional Galilean covariant spacetime

Tr(µ1 · · ·µn
) = 0, for n odd,

Tr(µν) = 8ηµν,

Tr(µνρσ ) = 8(ηµνηρσ − ηµρηνσ + ηµσηνρ),
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Tr(6) = 0,

Tr(6µ1 · · · µn
) = 0, for n odd,

Tr(6µν) = 0,

Tr(6µνρσ ) = 0,

Tr(	µν) = 0,

Tr(	µν	ρσ ) = 8(ηµρηνσ − ηµσηνρ).

Appendix C. Fierz identities

For later convenience, let us first introduce the following two quantities:

(γ A, γ B)β1β2
α1α2

= 1
4

[
(γ A)β1

α1
(γ B)β2

α2
+ (γ A)β2

α1
(γ B)β1

α2
+ (γ B)β2

α1
(γ A)β1

α2
+ (γ B)β1

α1
(γ A)β2

α2

]
, (C.1)

[γ A, γ B]β1β2
α1α2

= 1
4

[
(γ A)β1

α1
(γ B)β2

α2
− (γ A)β2

α1
(γ B)β1

α2
− (γ B)β2

α1
(γ A)β1

α2
+ (γ B)β1

α1
(γ A)β2

α2

]
. (C.2)

From the definition in equation (C.1), we find the following properties:

(γ A, γ B)β1β2
α1α2

= (γ B, γ A)β1β2
α1α2

,

(γ A + γ B, γ C)β1β2
α1α2

= (γ A, γ C)β1β2
α1α2

+ (γ B, γ C)β1β2
α1α2

,

(γ A, γ B)γ1γ2
α1α2

(γ C, γ D)β1β2
γ1γ2

= 1
2

[
(γ Aγ C, γ Bγ D)β1β2

α1α2
+ (γ Aγ D, γ Bγ C)β1β2

α1α2

]
.

Similarly, from equation (C.2) we find:

[γ A, γ B]β1β2
α1α2

= [γ B, γ A]β1β2
α1α2

,

[γ A + γ B, γ C]β1β2
α1α2

= [γ A, γ C]β1β2
α1α2

+ [γ B, γ C]β1β2
α1α2

,

[γ A, γ B]γ1γ2
α1α2

[γ C, γ D]β1β2
γ1γ2

= 1
2

(
[γ Aγ C, γ Bγ D]β1β2

α1α2
− [γ Aγ D, γ Bγ C]β1β2

α1α2

)
.

Also, the indices admit the following symmetry properties:

(γ A, γ B)β1β2
α1α2

= (γ A, γ B)β1β2
α2α1

= (γ A, γ B)β2β1
α1α2

, (C.3)

[γ A, γ B]β1β2
α1α2

= −[γ A, γ B]β1β2
α2α1

= −[γ A, γ B]β2β1
α1α2

. (C.4)

The prime Fierz identity comes from the expansion of the identity operator Iβ1β2
α1α2

in terms
of (γ AC)α1α2 and (C−1γ B)β1β2 :

Iβ1β2
α1α2

= δβ1
α1

δβ2
α2

=
∑
A,B

CB
A(γ AC)α1α2(C

−1γB)β1β2 . (C.5)

The coefficients CB
A are determined by using the relation

(γ AC)αβ(C−1γB)βα = Tr(γ AγB) = 8δB
A. (C.6)

With the operator 1
64 (C−1γA)α2α1(γ BC)β1β2 acting on equation (C.5), we obtain

CB
A = 1

64 (C−1γA)α2α1(γ BC)β1β2δ
β1
α1

δβ2
α2

= 1
8δB

A.

Hence

δβ1
α1

δβ2
α2

= 1

8

∑
A

(γ AC)α1α2(C
−1γA)β2β1 . (C.7)

This is the prime Fierz identity in the (5 + 1) Minkowski spacetime.
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Since the relationship (C.6) holds if we replace γ A with A [see equation (25)], we can
obtain the Fierz identity in the five-dimensional Galilean covariant spacetime:

δβ1
α1

δβ2
α2

= 1

8

∑
A

(AC)α1α2(C
−1A)β2β1 . (C.8)

It should be noted that the Galilean-covariant gamma matrices A are expressed in terms of
γ A s, so that the relationships (C.1) to (C.4) also hold for A s.

Recalling equations (9) and (10), we derive from the prime Fierz identity (C.7) that

1
2

(
δβ1
α1

δβ2
α2

+ δβ2
α1

δβ1
α2

) = (I, I)β1β2
α1α2

,

= 1
8

[
(C)α1α2(C

−1)β2β1 + 1
2 (γ 7σµνC)α1α2(C

−1γ 7σµν)
β2β1

+ 1
6 (σ λµνC)α1α2(C

−1σλµν)
β2β1

]
, (C.9)

1
2

(
δβ1
α1

δβ2
α2

− δβ2
α1

δβ1
α2

) = [I, I]β1β2
α1α2

,

= 1
8

[
(γ 7C)α1α2(C

−1γ 7)β2β1 + (γ µC)α1α2(C
−1γµ)β2β1

+ (iγ 7γ µC)α1α2(C
−1 iγ 7γµ)β2β1 + 1

2 (σµνC)α1α2(C
−1σµν)

β2β1
]
. (C.10)

Similarly, we obtain from equation (C.8), together with equations (26) and (27), that

1
2

(
δβ1
α1

δβ2
α2

+ δβ2
α1

δβ1
α2

) = (I, I)β1β2
α1α2

,

= 1
8

[
(C)α1α2(C

−1)β2β1 + 1
2 (6	µνC)α1α(2)(C

−16	µν)
β2β1

]
, (C.11)

1
2

(
δβ1
α1

δβ2
α2

− δβ2
α1

δβ1
α2

) = [I, I]β1β2
α1α2

,

= 1
8

[
(6C)α1α2(C

−16)β2β1 + (µC)α1α2(C
−1µ)β2β1

+ (i6µC)α1α2(C
−1 i6µ)β2β1 + 1

2 (	µνC)α1α2(C
−1	µν)

β2β1
]
.

(C.12)

Further Fierz identities follow from equations (C.9) and (C.10):

(γ A, γ B)β1β2
α1α2

= 1
16 [εB(γ Aγ BC)α1α2 + εA(γ Bγ AC)α1α2 ](C−1)β2β1

+ 1
32 [εB(γ Aγ 7σµνγ BC)α1α2 + εA(γ Bγ 7σµνγ AC)α1α2 ](C−1γ 7σµν)

β2β1

+ 1
96 [εB(γ Aσλµνγ BC)α1α2 + εA(γ Bσλµνγ AC)α1α2 ](C−1σλµν)

β2β1 ,

[γ A, γ B]β1β2
α1α2

= 1
16 [εB(γ Aγ 7γ BC)α1α2 + εA(γ Bγ 7γ AC)α1α2 ](C−1γ 7)β2β1

+ 1
16 [εB(γ Aγ µγ BC)α1α2 + εA(γ Bγ µγ AC)α1α2 ](C−1γµ)β2β1

+ 1
16 [εB(γ Aiγ 7γ µγ BC)α1α2 + εA(γ B iγ 7γ µγ AC)α1α2 ](C−1 iγ 7γµ)β2β1

+ 1
32 [εB(γ Aσµνγ BC)α1α2 + εA(γ Bσµνγ AC)α1α2 ](C−1σµν)

β2β1 .

Similarly, from equations (C.11) and (C.12), we have

(A, B)β1β2
α1α2

= 1
16 [εB(ABC)α1α2 + εA(BAC)α1α2 ](C−1)β2β1

+ 1
32 [εB(A6	µνBC)α1α2 + εA(B6	µνAC)α1α2 ](C−16	µν)

β2β1 ,

[A, B]β1β2
α1α2

= 1
16 [εB(A6BC)α1α2 + εA(B6AC)α1α2 ](C−16)β2β1

+ 1
16 [εB(AµBC)α1α2 + εA(BµAC)α1α2 ](C−1µ)β2β1

+ 1
16 [εB(Ai6µBC)α1α2 + εA(B i6µAC)α1α2 ](C−1 i6µ)β2β1

+ 1
32 [εB(A	µνBC)α1α2 + εA(B	µνAC)α1α2 ](C−1	µν)

β2β1 .
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Appendix D. Explicit forms of the wavefunctions

In this appendix, we display the wavefunctions explicitly, in both the (5 + 1)

Minkowski spacetime (appendix D.1) and in the 5-dimensional Galilean covariant spacetime
(appendix D.2).

D.1. The (5 + 1) Minkowski spacetime

The wavefunctions are given by equations (19) to (20). Their explicit expressions are given
below:

u(1)(p, pa) =
√

p0 + m

2p0

⎛
⎜⎜⎜⎜⎝

1

0
|p|

p0+m
n4

|p|
p0+m

(i + n5)

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
1 + n3

n1 + in2

)
,

u(1)(p, pa) = 1√
2(1 + n3)

(1 + n3, n1 − in2)

⊗
√

p0 + m

2p0

(
1, 0,− |p|

p0 + m
n4,− |p|

p0 + m
(−i + n5)

)
,

u(2)(p, pa) =
√

p0 + m

2p0

⎛
⎜⎜⎜⎜⎝

1

0
|p|

p0+m
n4

|p|
p0+m

(−i + n5)

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
−n1 + in2

1 + n3

)
,

u(2)(p, pa) = 1√
2(1 + n3)

(−n1 − in2, 1 + n3)

⊗
√

p0 + m

2p0

(
1, 0,− |p|

p0 + m
n4,− |p|

p0 + m
(i + n5)

)
,

u(3)(p, pa) =
√

p0 + m

2p0

⎛
⎜⎜⎜⎜⎝

0

1
|p|

p0+m
(−i + n5)

− |p|
p0+m

n4

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
1 + n3

n1 + in2

)
,

u(3)(p, pa) = 1√
2(1 + n3)

(1 + n3, n1 − in2)

⊗
√

p0 + m

2p0

(
0, 1,− |p|

p0 + m
(i + n5),

|p|
p0 + m

n4

)
,

u(4)(p, pa) =
√

p0 + m

2p0

⎛
⎜⎜⎜⎜⎝

0

1
|p|

p0+m
(i + n5)

− |p|
p0+m

n4

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
−n1 + in2

1 + n3

)
,
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u(4)(p, pa) = 1√
2(1 + n3)

(−n1 − in2, 1 + n3)

⊗
√

p0 + m

2p0

(
0, 1,− |p|

p0 + m
(−i + n5),

|p|
p0 + m

n4

)
,

v(1)(p, pa) =
√

p0 + m

2p0

⎛
⎜⎜⎜⎜⎝

|p|
p0+m

n4

|p|
p0+m

(−i + n5)

1

0

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
−n1 + in2

1 + n3

)
,

v(1)(p, pa) = 1√
2(1 + n3)

(−n1 − in2, 1 + n3)

⊗
√

p0 + m

2p0

( |p|
p0 + m

n4,
|p|

p0 + m
(i + n5),−1, 0

)
,

v(2)(p, pa) =
√

p0 + m

2p0

⎛
⎜⎜⎜⎜⎝

− |p|
p0+m

n4

− |p|
p0+m

(i + n5)

−1

0

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
1 + n3

n1 + in2

)
,

v(2)(p, pa) = 1√
2(1 + n3)

(1 + n3, n1 − in2)

⊗
√

p0 + m

2p0

(
− |p|

p0 + m
n4,− |p|

p0 + m
(−i + n5), 1, 0

)
,

v(3)(p, pa) =
√

p0 + m

2p0

⎛
⎜⎜⎜⎜⎝

|p|
p0+m

(i + n5)

− |p|
p0+m

n4

0

1

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
−n1 + in2

1 + n3

)
,

v(3)(p, pa) = 1√
2(1 + n3)

(−n1 − in2, 1 + n3)

⊗
√

p0 + m

2p0

( |p|
p0 + m

(−i + n5),− |p|
p0 + m

n4, 0,−1

)
,

v(4)(p, pa) =
√

p0 + m

2p0

⎛
⎜⎜⎜⎜⎝

− |p|
p0+m

(−i + n5)

|p|
p0+m

n4

0

−1

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
1 + n3

n1 + in2

)
,

25



J. Phys. A: Math. Theor. 41 (2008) 125402 M Kobayashi et al

v(4)(p, pa) = 1√
2(1 + n3)

(1 + n3, n1 − in2)

⊗
√

p0 + m

2p0

(
− |p|

p0 + m
(i + n5),

|p|
p0 + m

n4, 0, 1

)
,

where we have used the notation

na = pa

|p| , (a = 4, 5).

D.2. The five-dimensional Galilean covariant spacetime

In this, we give explicit forms of the wavefunctions given by equations (42) to (43). The
symbol P is a shorthand notation for the five-momentum defined in equation (38):

u(1)(P ) = 1√
2

√
E + 3m

E + m

⎛
⎜⎜⎜⎜⎝

1

0

− E−m
E+3m

i2
√

m(E−m)

E+3m

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
1 + n3

n1 + in2

)
,

u(1)(P ) = 1√
2(1 + n3)

(1 + n3, n1 − in2) ⊗ 1√
2

√
E + 3m

E + m

(
1, 0,

E − m

E + 3m
, i2

√
m(E − m)

E + 3m

)
,

u(2)(P ) = 1√
2

√
E + 3m

E + m

⎛
⎜⎜⎜⎜⎝

1

0

− E−m
E+3m

−i2
√

m(E−m)

E+3m

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
−n1 + in2

1 + n3

)
,

u(2)(P ) = 1√
2(1 + n3)

(−n1 − in2, 1 + n3)

⊗ 1√
2

√
E + 3m

E + m

(
1, 0,

E − m

E + 3m
,−i2

√
m(E − m)

E + 3m

)
,

u(3)(P ) = 1√
2

√
E + 3m

E + m

⎛
⎜⎜⎜⎜⎝

0

1

−i2
√

m(E−m)

E+3m

E−m
E+3m

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
1 + n3

n1 + in2

)
,

u(3)(P ) = 1√
2(1 + n3)

(1 + n3, n1 − in2)

⊗ 1√
2

√
E + 3m

E + m

(
0, 1,−i2

√
m(E − m)

E + 3m
,− E − m

E + 3m

)
,

u(4)(P ) = 1√
2

√
E + 3m

E + m

⎛
⎜⎜⎜⎜⎝

0

1

i2
√

m(E−m)

E+3m

E−m
E+3m

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
−n1 + in2

1 + n3

)
,
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u(4)(P ) = 1√
2(1 + n3)

(−n1 − in2, 1 + n3)

⊗ 1√
2

√
E + 3m

E + m

(
0, 1, i2

√
m(E − m)

E + 3m
,− E − m

E + 3m

)
,

v(1)(P ) = 1√
2

√
E + 3m

E + m

⎛
⎜⎜⎜⎜⎝

− E−m
E+3m

−2i
√

m(E−m)

E+3m

1

0

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
−n1 + in2

1 + n3

)
,

v(1)(P ) = 1√
2(1 + n3)

(−n1 − in2, 1 + n3)

⊗ 1√
2

√
E + 3m

E + m

(
− E − m

E + 3m
, 2i

√
m(E − m)

E + 3m
,−1, 0

)
,

v(2)(P ) = 1√
2

√
E + 3m

E + m

⎛
⎜⎜⎜⎜⎝

E−m
E+3m

−2i
√

m(E−m)

E+3m

−1

0

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
1 + n3

n1 + in2

)
,

v(2)(P ) = 1√
2(1 + n3)

(1 + n3, n1 − in2)

⊗ 1√
2

√
E + 3m

E + m

(
E − m

E + 3m
, 2i

√
m(E − m)

E + 3m
, 1, 0

)
,

v(3)(P ) = 1√
2

√
E + 3m

E + m

⎛
⎜⎜⎜⎜⎝

2i
√

m(E−m)

E+3m

E−m
E+3m

0
1

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
−n1 + in2

1 + n3

)
,

v(3)(P ) = 1√
2(1 + n3)

(−n1 − in2, 1 + n3)

⊗ 1√
2

√
E + 3m

E + m

(
−2i

√
m(E − m)

E + 3m
,

E − m

E + 3m
, 0,−1

)
,

v(4)(P ) = 1√
2

√
E + 3m

E + m

⎛
⎜⎜⎜⎜⎝

2i
√

m(E−m)

E+3m

− E−m
E+3m

0

−1

⎞
⎟⎟⎟⎟⎠ ⊗ 1√

2(1 + n3)

(
1 + n3

n1 + in2

)
,

v(4)(P ) = 1√
2(1 + n3)

(1 + n3, n1 − in2)

⊗ 1√
2

√
E + 3m

E + m

(
−2i

√
m(E − m)

E + 3m
,− E − m

E + 3m
, 0, 1

)
.

It is important to remark that the solutions in appendix D have well-defined massless
limits.
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Ablamowicz R Fauser (ed) 2000 Clifford Algebras and Their Applications in Mathematical Physics vol 1:
Algebra and Physics (Boston, MA: Birkhäuser)
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